

PEM330/PEM333/PEM333-P

Universalmessgerät

Softwareversion ab 1.20.13

B 9310 0330 B 9310 0331 B 9310 0333 B 9310 0334

Bender GmbH & Co. KG

Londorfer Str. 65 • 35305 Grünberg • Germany Postfach 1161 • 35301 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de www.bender.de

© Bender GmbH & Co. KG

Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Herausgebers. Änderungen vorbehalten!

Fotos: Bender Archiv

Inhaltsverzeichnis

٠.	Diese	DOKUMENTATION ENERGY NUCZEN	>
	1.1	Hinweise zur Benutzung	9
	1.2	Technische Unterstützung: Service und Support	10
	1.3	Schulungen	11
	1.4	Lieferbedingungen, Garantie, Gewährleistung und Haftung	12
2.	Sicher	heit	13
	2.1	Bestimmungsgemäße Verwendung	13
	2.2	Qualifiziertes Personal	13
	2.3	Sicherheitshinweise allgemein	14
3.	Geräte	ebeschreibung	15
	3.1	Einsatzbereich	15
	3.2	Gerätemerkmale	15
	3.3	Versionen	17
	3.4	Anwendungsbeispiel	18
	3.5	Funktionsbeschreibung	19
	3.6	Frontansicht	20
	3.7	Anschlussklemmen	20
4.	Monta	ge und Anschluss	21
	4.1	Projektierung	21
	4.2	Sicherheitshinweise	21
	4.3	Das Gerät montieren	22
	4.3.1	Maßbilder	22
	4.3.2	Fronttafeleinbau	23
	4.4	Das Gerät anschließen	23
	4.4.1	Sicherheitshinweise	23
	4.4.2	Vorsicherungen	24

	4.4.3	Anschluss Messstromwandler	24
	4.5	Hinweise zum Anschluss	24
	4.6	Anschlussbild	24
	4.6.1	PEM330	25
	4.6.2	PEM333	26
	4.6.3	PEM333P	28
	4.7	Anschlussschemata Spannungseingänge	30
	4.7.1	Dreiphasen-4-Leitersysteme (TN-, TT-, IT-Netze)	30
	4.7.2	Dreiphasen-3-Leitersystem	31
	4.7.3	Einphasen-3-Leitersystem (1P3W)	32
	4.7.4	Einphasen-2-Leitersystem (1P2W)	32
	4.7.5	Anschluss über Spannungswandler	33
5.	Inbetri	ebnahme	35
	5.1	Ordnungsgemäßen Anschluss prüfen	35
	5.2	Vor dem Einschalten	
	5.3	Einschalten	
	5.4	Systemintegration und Visualisierung	
	Padian	nen	
٠.	6.1	Bedienelemente kennenlernen	
	6.2		
		Test LC-Display	
	6.3	Standarddisplayanzeigen kennenlernen	
	6.4	Leistungs- und Strombedarfe (Demand Display)	
	6.5	LED-Anzeige	
	6.6	Standardanzeige	
	6.7	Datenanzeige bei Stern- oder Dreieckschaltung	
	6.7.1	Taster "SYSTEM"	
	6.7.2	Taster "PHASE"	
	6.7.3	Taster "ENERGY"	
	6.8	Datenanzeige bei Einphasen-Schaltungen	47
		· · · · · · · · · · · · · · · · · · ·	
	6.8.1 6.8.2	Taster "PHASE"	47

	6.8.3	Taster "ENERGY"	50
	6.9	Setup über Taster am Gerät	51
	6.9.1	Setup: Bedeutung der Taster	51
	6.9.2	Setup: Übersichtsdiagramm Menü	52
	6.10	Setup: Einstellmöglichkeiten	53
7.	Anwer	ndung / Ein- und Ausgänge	
	7.1	Digitale Eingänge (nur PEM333)	61
	7.2	Digitale Ausgänge (nur PEM333)	
	7.3	Anzeige Energy pulsing	61
	7.4	Digitale Pulsausgänge (nur PEM333P)	62
	7.5	Leistung und Energie	62
	7.5.1	Phasenwinkel von Spannung und Strom	62
	7.5.2	Energie	62
	7.5.3	Bedarf (Demand DMD)	63
	7.6	Setpoints (nur PEM333)	63
	7.7	Ereignisspeicher (SOE-Log)	65
	7.8	Power Quality	65
	7.8.1	Gesamt-Oberschwingungsverzerrung	65
	782	Unsymmetrie	66

8.	Modb	us Register Übersicht	67
	8.1	Basis-Messwerte	68
	8.2	Energie-Messung gesamt	73
	8.3	Energie-Messung je Phase	73
	8.4	Spitzenbedarf	76
	8.5	Gesamt-Oberschwingungsverzerrung (THD) und k-Faktor	77
	8.6	Erkennung Anschlussfehler	78
	8.7	Setup Parameter	80
	8.8	Ereignisspeicher (SOE-Log)	84
	8.9	Speicher Maximal-/Minimalwerte	
		(Max-/Min-Speicher)	88
	8.9.1	Speicher Maximalwerte	
	8.9.2	Speicher Minimalwerte	91
	8.9.3	Datenstruktur Max-/Min-Speicher	94
	8.10	Zeiteinstellung	95
	8.11	Steuerung der Ausgänge DOx	96
	8.12	Information Universalmessgerät	97
9.	Techni	sche Daten	99
	9.1	Normen und Zulassungen 1	02
	9.2	Bestellangaben 1	02
INI	DEV	1	υs

1. Diese Dokumentation effektiv nutzen

1.1 Hinweise zur Benutzung

Dieses Handbuch richtet sich an Installateure und Nutzer des Geräts und muss stets in unmittelbarer Nähe des Geräts aufbewahrt werden.

Um Ihnen das Verständnis und das Wiederfinden bestimmter Textstellen und Hinweise im Handbuch zu erleichtern, sind wichtige Hinweise und Informationen mit Symbolen gekennzeichnet. Die folgenden Beispiele erklären die Bedeutung dieser Symbole:

Das Signalwort bezeichnet eine Gefährdung mit einem hohen Risikograd, die, wenn sie nicht vermieden wird, den Tod oder eine schwere Verletzung zur Folge hat.

Das Signalwort bezeichnet eine Gefährdung mit einem mittleren Risikograd, die, wenn sie nicht vermieden wird, den Tod oder eine schwere Verletzung zur Folge haben kann.

Das Signalwort bezeichnet eine Gefährdung mit einem **niedrigen Risikograd**, die, wenn sie nicht vermieden wird, eine geringfügige oder **mäßige Verletzung** oder **Sachschaden** zur Folge haben.

Dieses Symbol bezeichnet Informationen, die Ihnen bei der **optimalen Nutzung** des Produktes behilflich sein sollen.

Dieses Handbuch wurde mit größtmöglicher Sorgfalt erstellt. Dennoch sind Fehler und Irrtümer nicht vollständig auszuschließen. Die Bender-Gesellschaften übernehmen keinerlei Haftung für Personen- oder Sachschäden, die sich aus Fehlern oder Irrtümern in diesem Handbuch herleiten.

Die eingetragenen Warenzeichen, die in diesem Dokument verwendet werden, sind Besitz der jeweiligen Firmen.

1.2 Technische Unterstützung: Service und Support

Für die Inbetriebnahme und Störungsbehebung bietet Bender an:

First Level Support

Technische Unterstützung telefonisch oder per E-Mail für alle Bender-Produkte

- Fragen zu speziellen Kundenapplikationen
- Inbetriebnahme
- Störungsbeseitigung

Telefon: +49 6401 807-760* Fax: +49 6401 807-259

nur in Deutschland: 0700BenderHelp (Telefon und Fax)

E-Mail: support@bender-service.com

Repair Service

10

Reparatur-, Kalibrier-, Update- und Austauschservice für alle Bender-Produkte

- Reparatur, Kalibrierung, Überprüfung und Analyse von Bender-Produkten
- Hard- und Software-Update von Bender-Geräten
- Ersatzlieferung für defekte oder falsch gelieferte Bender-Geräte
- Verlängerung der Garantie von Bender-Geräten mit kostenlosem Reparaturservice im Werk bzw. kostenlosem Austauschgerät

Telefon: +49 6401 807-780** (technisch) /

+49 6401 807-784**, -785** (kaufmännisch)

Fax: +49 6401 807-789

E-Mail: repair@bender-service.com

Geräte für den Reparaturservice senden Sie bitte an folgende Adresse: Bender GmbH, Repair-Service, Londorfer Strasse 65, 35305 Grünberg

Field Service

Vor-Ort-Service für alle Bender-Produkte

- Inbetriebnahme, Parametrierung, Wartung, Störungsbeseitigung für Benderprodukte
- Analyse der Gebäudeinstallation (Netzqualitäts-Check, EMV-Check, Thermografie)
- Praxisschulungen für Kunden

Telefon: +49 6401 807-752**, -762 **(technisch) /

+49 6401 807-753** (kaufmännisch)

Fax: +49 6401 807-759

E-Mail: fieldservice@bender-service.com

Internet: www.bender.de

1.3 Schulungen

Bender bietet Ihnen gerne eine Einweisung in die Bedienung des Universalmessgeräts an.

Aktuelle Termine für Schulungen und Praxisseminare finden Sie im Internet unter www.bender.de-> Fachwissen -> Seminare.

^{*365} Tage von 07:00 - 20:00 Uhr (MEZ/UTC +1)

^{**}Mo-Do 07:00 - 16:00 Uhr, Fr 07:00 - 13:00 Uhr

1.4 Lieferbedingungen, Garantie, Gewährleistung und Haftung

Es gelten die Liefer- und Zahlungsbedingungen der Firma Bender.

Für Softwareprodukte gilt zusätzlich die vom ZVEI (Zentralverband Elektrotechnik- und Elektronikindustrie e. V.) herausgegebene "Softwareklausel zur Überlassung von Standard-Software als Teil von Lieferungen, Ergänzung und Änderung der Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie".

Die Liefer- und Zahlungsbedingungen erhalten Sie gedruckt oder als Datei bei Bender.

2. Sicherheit

2.1 Bestimmungsgemäße Verwendung

Das Universalmessgerät PEM330/PEM333 dient zur

- Analyse der Energie und Leistung (Power Analyzer)
- Überwachung der Spannungsversorgungs-Qualität (Power Quality)
- Erfassung relevanter Daten für das Energiemanagement (Energy Management).

Als Fronttafeleinbaugerät ist es geeignet, analoge Anzeigeinstrumente zu ersetzen. Das PEM330/PEM333 ist in 2-, 3- und 4-Leiter-Netzen und in TN-, TT- und IT-Netzen einsetzbar. Die Strommesseingänge des PEM werden über externe .../1A- oder .../5A-Messstromwandler angeschlossen. Die Messung in Mittel- und Hochspannungsnetzen findet grundsätzlich über Messstrom- und Spannungswandler statt.

Zur bestimmungsgemäßen Verwendung gehören:

- Anlagenspezifische Einstellungen gemäß den vor Ort vorhandenen Anlagen- und Einsatzbedingungen.
- Das Beachten aller Hinweise aus dem Handbuch.

2.2 **Qualifiziertes Personal**

Das Gerät darf **nur von Elektrofachkräften eingebaut** und in Betrieb genommen werden.

Eine Elektrofachkraft ist aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen in der Lage, Arbeiten an elektrischen Anlagen auszuführen und mögliche Gefahren selbstständig zu erkennen. Die Elektrofachkraft ist speziell für das Arbeitsumfeld ausgebildet, in dem sie tätig ist, und kennt relevante Normen und Bestimmungen. In Deutschland muss die Elektrofachkraft die Bestimmungen der Unfallverhütungsvorschrift BGV A3 erfüllen. In anderen Ländern gelten entsprechende Vorschriften.

2.3 Sicherheitshinweise allgemein

Bender-Geräte sind nach dem Stand der Technik und den anerkannten sicherheitstechnischen Regeln gebaut. Dennoch können bei deren Verwendung Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Beeinträchtigungen an Bender-Geräten oder an anderen Sachwerten entstehen.

Lebensgefahr durch elektrischen Strom!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch elektrischen Strom. Alle Arbeiten an elektrischen Anlagen sowie Arbeiten zum Einbau, zur Inbetriebnahme und Arbeiten während des Betriebs des Gerätes dürfen **nur durch Elektrofachkräfte** durchgeführt werden!

- Benutzen Sie Bender-Geräte nur:
 - für die bestimmungsgemäße Verwendung
 - im sicherheitstechnisch einwandfreien Zustand
 - unter Beachtung der für den Einsatzort geltenden Regeln und Vorschriften zur Unfallverhütung
- Beseitigen Sie sofort alle Störungen, die die Sicherheit beeinträchtigen können.
- Nehmen Sie keine unzulässigen Veränderungen vor und verwenden Sie nur Ersatzteile und Zusatzeinrichtungen, die vom Hersteller der Geräte verkauft oder empfohlen werden. Wird dies nicht beachtet, so können Brände, elektrische Schläge und Verletzungen verursacht werden.
- Hinweisschilder müssen immer gut lesbar sein. Ersetzen Sie sofort beschädigte oder unlesbare Schilder.
- Wurde das Gerät durch Überspannung oder Führen von Kurzschlussstrom belastet, so muss es überprüft und gegebenenfalls ersetzt werden.
- Wird das Gerät außerhalb der Bundesrepublik Deutschland verwendet, sind die dort geltenden Normen und Regeln zu beachten.
 Eine Orientierung kann die europäische Norm EN 50110 bieten.

3. Gerätebeschreibung

3.1 Einsatzbereich

Elektrischer Strom ist für den Menschen nicht unmittelbar sichtbar. Universalmessgeräte zur Überwachung von elektrischen Größen kommen überall dort zum Einsatz, wo Energieverbräuche, Leistungsbedarfe oder die Qualität der Versorgungsspannung sichtbar gemacht werden sollen.

Das PEM330/PEM333 eignet sich zur Überwachung:

- von Eigenerzeugungsanlagen (PV-Anlagen, BHKW, Wasserkraft, Windenergieanlagen)
- energieverbrauchsintensiver Betriebsmittel und Anlagenteile
- empfindlicher Betriebsmittel

3.2 Gerätemerkmale

Das Universalmessgerät PEM330/PEM333 für Power Quality und Energiemanagement zeichnet sich durch folgende Merkmale aus:

- Genauigkeitsklasse nach IEC62053-22: 0,5 S
- LED-Pulsausgänge für Wirk- und Blindarbeit
- Leistungs- und Strombedarfe für einstellbare Zeitfenster
- Spitzenbedarfe mit Zeitstempel
- Modbus-RTU-Kommunikation über RS-485 (nicht PEM330)
- 2 digitale Eingänge (nicht PEM330)
- Parametrierbare Setpoints (nicht PEM330)
- 2 digitale Ausgänge (nur PEM333)
- 2 Pulsausgänge (nur PEM333-...P)

Messgrößen

Strangspannungen
 Außenleiterspannungen
 Strangströme
 U_{L1}, U_{L2}, U_{L3} in V
 U_{L1L2}, U_{L2L3}, U_{L3L1} in V

Phasenwinkel
 Leistung per Außenleiter
 Leistung gesamt
 S in kVA, P in kW, Q in kvar
 S in kVA, P in kW, Q in kvar

Verschiebungsfaktor cos (φ)Leistungsfaktor λ

Wirk- und Blindenergiebezug in kWh, kvarhWirk- und Blindenergieexport in kWh, kvarh

Spannungsunsymmetrie in %
 Stromunsymmetrie in %
 k-Faktor für /

Gesamt-Oberschwingungsverzerrung (THD) für U und I

Max-/Minwerte je Außenleiter

- Max-/Minwerte gesamt

3.3 Versionen

	PEM330	PEM330-251	PEM333	PEM333-251	PEM333-255P	PEM333-251P
RS-485	-	-	х	Х	х	х
parametrierbare Setpoints	-	-	6	6	6	6
Digitale Eingänge	-	-	2	2	2	2
Digitale Ausgänge	-	-	2	2	-	-
Digitale Pulsausgänge	-	-	-	-	2	2
Abtastrate	1,6 kHz	1,6 kHz	1,6 kHz	1,6 kHz	1,6 kHz	1,6 kHz
THD-Berechnung	15.	15.	15.	15.	15.	15.
Stromeingang	5 A	1 A	5 A	1 A	5 A	1 A
Systemprotokoll (Einträge)	32	32	32	32	32	32

3.4 Anwendungsbeispiel

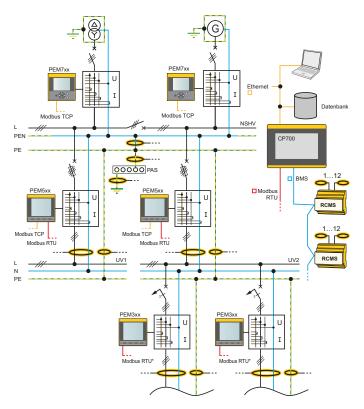


Abb. 3.1: Anwendungsbeispiel

*) nur PEM333...

3.5 Funktionsbeschreibung

Mit dem digitalen Universalmessgerät PEM330/PEM333... werden elektrische Größen eines Elektrizitätsversorgungsnetzes erfasst und angezeigt. Der Umfang der Messungen reicht von Strömen und Spannungen über Energieverbräuche und Leistungen bis hin zur Gesamt-Oberschwingungsverzerrung zur Beurteilung der Spannungs- und Stromqualität.

Die Genauigkeit der Wirkverbrauchszählung entspricht der Klasse 0,5 S nach DIN EN 62053-22 (VDE 0418 Teil 3-22):2003-11. Die Stromeingänge werden über externe .../1 A oder .../5 A Messstromwandler angeschlossen.

Das große Display des Schalttafeleinbaugeräts erleichtert das einfache Ablesen relevanter Messgrößen und erlaubt eine schnelle Konfiguration. Zusätzlich ermöglicht die RS-485-Schnittstelle* eine zentrale Auswertung und Verarbeitung der Daten. Über die digitalen Ein- und Ausgänge können Schaltvorgänge überwacht oder initiiert werden (Beispiel: Abschalten eines unkritischen Verbrauchers bei Überschreitung eines Spitzenlast-Schwellenwertes).

Das Universalmessgerät vom Typ PEM330/PEM333 erfüllt folgende Funktionen:

- Bereitstellen von Energieverbrauchsdaten für ein durchdachtes Energiemanagement
- kostenstellenspezifische Zuordnung von Energiekosten
- Überwachung der Netzqualität zur Kostensenkung und Erhöhung der Anlagenverfügbarkeit

^{*)} nur PEM333...

3.6 Frontansicht

Abb. 3.2: Frontansicht PEM330/PEM333

3.7 Anschlussklemmen

Auf der Rückseite des Geräts sind die Anschlussklemmen zu finden.

4. Montage und Anschluss

4.1 Projektierung

Bei Fragen zur Projektierung wenden Sie sich an Fa. Bender:

Internet: www.bender.de Telefon: +49-6401-807-0

4.2 Sicherheitshinweise

Nur Elektrofachkräfte dürfen das Gerät anschließen und in Betrieb nehmen. Das Personal sollte dieses Handbuch gelesen haben und muss alle Hinweise verstanden haben, die die Sicherheit betreffen.

Lebensgefahr durch elektrischen Strom!

Befolgen Sie die grundlegenden Sicherheitsregeln für die Arbeit mit elektrischem Strom.

Beachten Sie die Angaben zu Nennanschluss- und Versorgungsspannung gemäß den technischen Daten!

4.3 Das Gerät montieren

4.3.1 Maßbilder

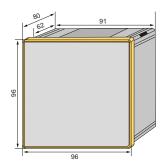


Abb. 4.1: Maßbild PEM33... (Frontansicht)

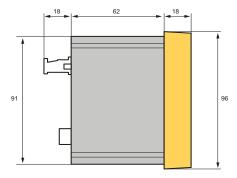


Abb. 4.2: Maßbild PEM33... (Seitenansicht)

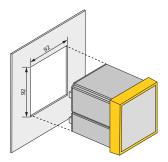


Abb. 4.3: Maßbild PEM33... (Montageausschnitt)

4.3.2 Fronttafeleinbau

Das Gerät benötigt eine Einbauöffnung von 92 x 92 mm.

- 1. Setzen Sie das Gerät in die Einbauöffnung der Fronttafel.
- Setzen Sie die mitgelieferten 4 transparenten Halteklammern von hinten auf die Kanten des Geräts.
- 3. Schieben Sie die Klammern in Richtung Frontplatte.
- 4. Kontrollieren Sie den festen Sitz des Geräts in der Fronttafel.

Das Gerät ist eingebaut.

4.4 Das Gerät anschließen

4.4.1 Sicherheitshinweise

Lebensgefahr durch elektrischen Strom!

Befolgen Sie die grundlegenden Sicherheitsregeln für die Arbeit mit elektrischem Strom.

Beachten Sie die Angaben zu Nennanschluss- und Versorgungsspannung gemäß den technischen Daten!

4.4.2 Vorsicherungen

Vorsicherungen Versorgungsspannung: 6 A

Kurzschlussschutz: Sichern Sie die Messeingänge normenkonform ab. Sorgen Sie für eine geeignete Trennvorrichtung. Einzelheiten hierzu finden Sie in den Bedienungsanleitungen der verwendeten Messstromwandler.

Wenn die Versorgungsspannung U_s aus einem **IT-Netz** gespeist wird, sind **beide Außenleiter abzusichern**.

4.4.3 Anschluss Messstromwandler

Berücksichtigen Sie beim Anschluss der Messstromwandler die Anforderungen der DIN VDE 0100-557 (VDE 0100-557) – Errichten von Niederspannungsanlagen - Teil 5: Auswahl und Errichtung elektrischer Betriebsmittel - Abschnitt 557: Hilfsstromkreise

4.5 Hinweise zum Anschluss

- Absicherung zum Leitungsschutz: 6A flink. Bei Versorgung aus einem IT-System müssen beide Leitungen abgesichert werden.
- Nur PEM333...: Der Anschluss an den RS-485-Bus erfolgt über die Klemmen D+, D- und SH. An den Bus können bis zu 32 Geräte angeschlossen werden. Die maximale Leitungslänge für den Bus-Anschluss aller Geräte beträgt 1200 m.

4.6 Anschlussbild

Verdrahten Sie das Gerät gemäß Anschlussbild. Die Anschlüsse finden Sie auf der Rückseite des Geräts.

4.6.1 PEM330

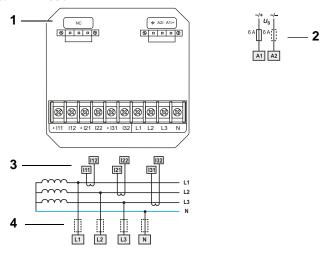


Abb. 4.4: Anschlussbild PEM330

Legende zum Anschlussbild

1	NC: Anschlüsse nicht verwendet.
2	Versorgungsspannung. Absicherung zum Leitungsschutz: 6 A flink. Bei Versorgung aus einem IT-System müssen beide Leitungen abgesichert werden.
3	Anschluss des zu überwachenden Systems (nicht benötigte Anschlüsse I sind kurzzuschließen).
4	Messspannungseingänge: Die Messleitungen sollten mit geeigneten Vorsicherungen versehen werden.

4.6.2 PEM333

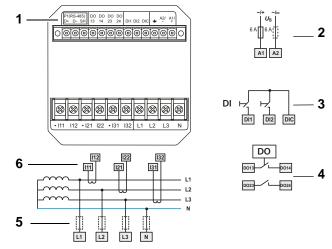


Abb. 4.5: Anschlussbild PEM333

Legende zum Anschlussbild

1	Anschluss RS-485-Bus
2	Versorgungsspannung. Absicherung zum Leitungsschutz: 6 A flink. Bei Versorgung aus einem IT-System müssen beide Leitungen abgesichert werden.
3	Digitaleingänge
4	Digitalausgänge (Relais-Schließerkontakte)
5	Messspannungseingänge: Die Messleitungen sollten mit geeigneten Vorsicherungen versehen werden.
6	Anschluss des zu überwachenden Systems (nicht benötigte Anschlüsse I sind kurzzuschließen).

Digitale Ausgänge PEM333

Das Universalmessgerät PEM333 verfügt über 2 konfigurierbare Ausgänge (Schließer).

Abb. 4.6: Digitale Ausgänge PEM333

Bemessungs- betriebsspannung	AC 230 V	DC 24 V	AC 110 V	DC 12 V
Bemessungs- betriebsstrom	5 A	5 A	6 A	5 A

Digitale Eingänge PEM333

Das Universalmessgerät PEM333 bietet 2 digitale Eingänge. Die Eingänge werden durch eine galvanisch getrennte Spannung von DC 24 V gespeist. Durch äußere Beschaltung muss mindestens ein Strom von $I_{min} > 2,4$ mA fließen, um ein Ansprechen der Eingänge zu erreichen.

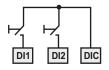


Abb. 4.7: Digitale Eingänge PEM333

4.6.3 PEM333-...P

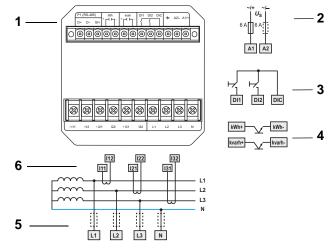


Abb. 4.8: Anschlussbild PEM333-...P

Legende zum Anschlussbild

1	Anschluss RS-485-Bus
2	Versorgungsspannung. Absicherung zum Leitungsschutz: 6 A flink. Bei Versorgung aus einem IT-System müssen beide Leitungen abgesichert werden.
3	Digitaleingänge
4	Pulsausgänge (Optokoppler) für kWh und kvarh; max. zulässige Fremdspannung 80 V; max. Schaltstrom 50 mA
5	Messspannungseingänge: Die Messleitungen sollten mit geeigneten Vorsicherungen versehen werden.
6	Anschluss des zu überwachenden Systems (nicht benötigte Anschlüsse I sind kurzzuschließen).

Pulsausgänge PEM333-...P (Schema interner Aufbau)

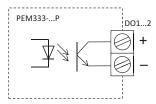


Abb. 4.9: Pulsausgänge PEM333-...P (Schema interner Aufbau)

Digitale Eingänge PEM333-...P

Das Universalmessgerät PEM333-...P bietet 2 digitale Eingänge. Die Eingänge werden durch eine galvanisch getrennte Spannung von DC 24 V gespeist. Durch äußere Beschaltung muss mindestens ein Strom von $I_{\min} > 2,4$ mA fließen, um ein Ansprechen der Eingänge zu erreichen.

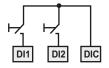


Abb. 4.10: Digitale Eingänge PEM333-...P

4.7 Anschlussschemata Spannungseingänge

4.7.1 Dreiphasen-4-Leitersysteme (TN-, TT-, IT-Netze)

Das PEM kann in Dreiphasen-4-Leitersystemen unabhängig von der Netzform (TN-, TT-, IT-Netz) eingesetzt werden.

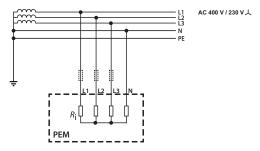


Abb. 4.11: Anschlussschema Dreiphasen-4-Leitersystem (Beispiel TN-S-System)

4.7.2 Dreiphasen-3-Leitersystem

Das PEM kann in Dreiphasen-3-Leitersystemen eingesetzt werden. Die Außenleiterspannung darf maximal AC 400 V betragen.

Beim Einsatz im 3-Leitersystem muss die Anschlussart (**TYPE**) auf Dreieck (**DELTA**) gestellt werden (siehe Seite 41). Hierbei sind die **Messeingänge L2 und N** zu **brücken**.

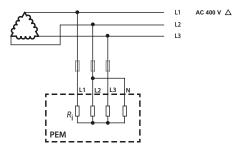


Abb. 4.12: Anschlussschema Dreiphasen-3-Leitersystem

4.7.3 Einphasen-3-Leitersystem (1P3W)

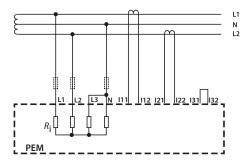


Abb. 4.13: Anschlussschema Einphasen-3-Leitersystem

4.7.4 Einphasen-2-Leitersystem (1P2W)

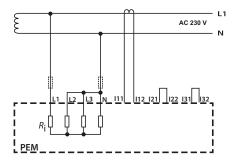


Abb. 4.14: Anschlussschema Einphasen-2-Leitersystem

4.7.5 Anschluss über Spannungswandler

Die Ankopplung über Messspannungswandler ermöglicht den Einsatz des Messgeräts in Mittel- und Hochspannungsanlagen. Das Übersetzungsverhältnis im PEM330/PEM333 ist einstellbar (1...2200).

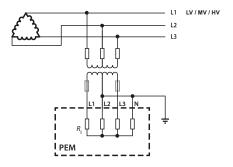


Abb. 4.15: Anschlussschema über Spannungswandler

5. Inbetriebnahme

5.1 Ordnungsgemäßen Anschluss prüfen

Beachten Sie für Einbau und Anschluss die geltenden Normen und Vorschriften, sowie die Bedienungsanleitungen der Geräte.

5.2 Vor dem Einschalten

Beachten Sie folgende Fragen vor dem Einschalten:

- Stimmt die Versorgungsspannung mit den Angaben auf den Typenschildern der Geräte überein?
- Wird die Nennisolationsspannung der Messstromwandler nicht überschritten?
- Stimmt der Maximalstrom des Messstromwandlers mit den Angaben auf dem Typenschild des angeschlossenen Geräts überein?

5.3 Einschalten

Nach dem Einschalten führen Sie folgende Arbeitsschritte durch:

- 1. Versorgungsspannung zuschalten.
- 2. Busadresse/IP-Adresse einstellen.
- Messstromwandler-Übersetzungsverhältnis einstellen (für jeden Kanal).
- 4. Bei Bedarf Messstromwandler-Zählrichtung ändern.
- 5. Nominalspannung einstellen.
- 6. Schaltung wählen: Stern-, Dreieck-Schaltung, Einphasen-...-Leiter.

5.4 Systemintegration und Visualisierung

Das Universalmessgerät PEM333... kann über Modbus-RTU sowohl parametriert als auch abgefragt werden. Näheres hierzu findet sich in "Kapitel 8. Modbus Register Übersicht" sowie im Internet www.modbus.org.

Außerdem ist die Einbindung in das Bender-eigene Busprotokoll BMS-Bus (Bender Messgeräte Schnittstelle) über zusätzliche Kommunikationsmodule möglich. So wird die Kommunikation mit (bereits vorhandenen) Bender-Geräten zur Geräteparametrierung und zur Visualisierung der Messwerte und Alarme erreicht.

Hilfe und Beispiele zur Systemintegration finden Sie auf der Bender-Homepage **www.bender.de** sowie in der persönlichen Beratung durch den Bender-Service (siehe "Kapitel 1.2 Technische Unterstützung: Service und Support").

6. Bedienen

6.1 Bedienelemente kennenlernen

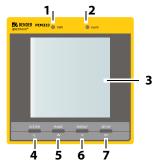


Abb. 6.1: Bedienelemente

Legende der Bedienelemente

Nr.	Element	Beschreibung
1	LED "kWh"	Pulsausgang, siehe "LED-Anzeige" auf Seite 43
2	LED "kvarh"	r disadsgarig, sierie "LLD-Arizerge" auf Seite 43
3	LC-Display	
4	Taster "SYSTEM"	Mittel- und Gesamtwerte (Strom, Spannung) anzeigen im Menü : bei Zahlenwerten den Cursor eine Stelle nach links setzen
5	Taster "PHASE" ∧	Außenleiterbezogene Messgrößen anzeigen im Menü: einen Eintrag nach oben blättern bei Zahlenwerten: Erhöhen des Wertes

6	Taster "ENERGY" V	Messwerte anzeigen: Wirk- und Blindenergiebezug / Wirk- und Blindenergieexport (Zeile 4) im Menü: einen Eintrag nach unten blättern bei Zahlenwerten: Wert senken
7	Taster "SETUP" OK	> 3 s drücken: Wechsel zwischen Setup-Menü und Standard-Anzeige im Menü: Auswahl des zu bearbeitenden Parameters Bestätigen der Eingabe

6.2 Test LC-Display

Drücken der Taster "PHASE" und "ENERGY" gleichzeitig für > 2 Sekunden testet das LC-Display. Während des Tests werden alle LCD-Segmente dreimal hintereinander für je eine Sekunde ein- und wieder ausgeschaltet. Nach dem Testdurchlauf kehrt das Gerät selbsttätig in den Standardanzeigemodus zurück.

Abb. 6.2: Display bei LCD-Test

6.3 Standarddisplayanzeigen kennenlernen

Im Display können fünf verschiedene Anzeigebereiche unterschieden werden.

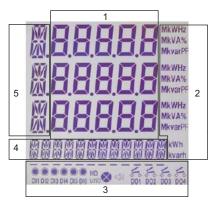


Abb. 6.3: Anzeigebereiche

Legende der Anzeigebereiche

	<u> </u>
1	Messwerte
2	Maßeinheiten
3	Zeigt die Status für den Zustand der digitalen Ein- und Ausgänge (DI status, DO status), Gesamt-Oberschwingungsverzerrung (Total Harmonic Distortion THD), Unsymmetrie (unb), Quadrant (siehe Seite 40)
4	Zeigt Energie-Informationen wie Wirkenergiebezug und -export, Blindenergiebezug und -export und Scheinenergie
5	Symbole (Erklärung siehe Seite 41)

Beschreibung der Standarddisplayanzeigen (Bereiche 3 - 5)

Bereich	Segmente	Symbolbeschreibung			
3		Ol offen	DO offen		
		•	50		
	$\odot \odot$	DI geschlossen	DO geschlossen		
	DI1 DI2 HD	HD	unb		
	unb \[\begin{align*} \begin{align*} \cdot \qqq	Oberschwingungs- verzerrung (Harmonic Distortion)	Unsymmetrie (Unbalance)		
	O O O O DO1 DO2	Q2 Q3 Q1 Q4	□ ∺		
		Quadrant	Alarmsymbol		
4		<u>71</u>			
		Indikator Scheinenergie	Exportindikator (Wirk- und Blindleistung)		

Bereich	Segmente	Sy	mbolbes	chreibu	ng	
5		 _IN Strangspan	inung	I Li_ _{Auß}	enleitersp	annung
			<u> </u>		M 77 11	
		Ч		ınb	<u>-11</u>	
		Neutralleiter- strom (I ₄)	Spannui Stromur metrie		Bedarf (Demand	(k
		ات ت	<u> </u>		<u>Т</u>	
	ĽΝ. NŽI	F-	7 I Gesamt-	HD -Ober-	7 I Gesamt-	HD Ober-
	עַוֹאַ.	Verschiebungs- faktor (Dis- placement PF)	schwing verzerru U _{L1/L2/L3}	jungs- ing	schwing verzerrui I _{1/2/3} (TH	ungs- ng
		\ \ 			T _/ _/	
		k-Faktor	Phasenv U _{L1/L2/L3}		Phasenw I _{1/2/3}	rinkel

Abb. 6.4: Standarddisplayanzeigen

6.4 Leistungs- und Strombedarfe (Demand Display)

Die Bedarfe werden nach folgendem Schema im Display dargestellt:

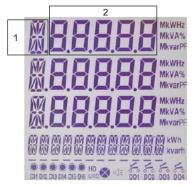


Abb. 6.5: Display Bedarf

1 Bedarfe:

P: Wirkleistungsbedarf P
q: Blindleistungsbedarf Q,
S: Scheinleistungsbedarf S

2 Wert Bedarf

6.5 LED-Anzeige

Das Universalmessgerät hat zwei rote LEDs auf der Frontseite: "kWh" und "kvarh".

Die beiden LED-Pulsausgänge werden für kWh- und kvar-Anzeige verwendet, wenn die Funktion EN PULSE aktiviert ist. Dies kann im Setup-Menü mit den Tastern auf der Vorderseite oder über die Kommunikationsschnittstelle (nur PEM333) eingestellt werden. Die Häufigkeit des Blinkens je Energiemenge ist über die Pulskonstante (EN CONST) einzustellen. Um die tatsächliche Energiemenge zu ermitteln, ist die Blinkfrequenz mit den Wandlerverhältnissen und der Pulskonstanten zu verrechnen.

6.6 Standardanzeige

Das Universalmessgerät zeigt automatisch die Standardanzeige, wenn im Setupmodus drei Minuten lang keine Aktivität über die Taster erfolgt ist.

Abb. 6.6: Standardanzeige

6.7 Datenanzeige bei Stern- oder Dreieckschaltung

Die Anzeige der Messdaten erfolgt über die drei Taster "SYSTEM", "PHASE" und "ENERGY". Die folgenden Tabellen zeigen, wie die einzelnen Werte bei der **Stern- oder Dreieckschaltung** (Einstellung Menüpunkt TYPE, Register 41012) abgerufen werden können.

6.7.1 Taster "SYSTEM"

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
	A W PF	ØI	$P_{\rm ges}$	Leistungs- faktor λ _{ges}
LL	V kvar Hz	Ø U _{LL}	Q_{ges}	f
	kW kvar kVA	P _{ges}	Q_{ges}	S _{ges}
L _N	V A kW	Stern: Ø <i>U</i> _{LN} Dreieck: Ø <i>U</i> _{LL}	ØI	P _{ges}
1 4	А	* I ₄		
U	% %	*	Unsymmetrie <i>U</i>	Unsymmetrie I
D M D	A A A	Bedarf I ₁	Bedarf I ₂	Bedarf I ₃

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
D	kW			
M	kvar	Bedarf P	Bedarf Q	Bedarf S
D	kVA			

Tab. 6.1: Anzeigemöglichkeiten über Taster "SYSTEM"

Anmerkung:

* Bei Modus "Dreieckschaltung" zeigt das Display "–".

6.7.2 Taster "PHASE"

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
	A A A	I ₁	l ₂	I ₃
1 _N 2 _N 3 _N	V V	<i>U</i> _{L1} *	<i>U</i> _{L2} *	U _{L3} *
12 23 31	V V V	U _{L1L2}	U _{L2L3}	U _{L3L1}
	kW kW kW	P _{L1} *	${P_{L2}}^*$	P _{L3} *
	var var var	${Q_{L1}}^*$	Q _{L2} *	Q _{L3} *

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
	kVA kVA kVA	S _{L1} *	S _{L2} *	S _{L3} *
	PF PF PF	λ _{L1} *	λ _{L2} *	λ _{L3} *
d P F	PF PF PF	Verschiebungs- faktor cos (φ) _{L1} *	Verschiebungs- faktor cos (φ) _{L2} *	Verschiebungs- faktor cos (φ) _{L3} *
U	% % %	THD U _{L1}	THD U _{L2}	THD U _{L3}
T	% % %	THD I ₁	THD I ₂	THD I ₃
K F		k-Faktor I ₁	k-Faktor I ₂	k-Faktor I ₃
<u> </u>		Phasenwinkel U _{L1}	Phasenwinkel U _{L2}	Phasenwinkel U _{L3}
		Phasenwinkel I ₁	Phasenwinkel I ₂	Phasenwinkel I ₃

Tab. 6.2: Anzeigemöglichkeiten über Taster "Phase"

Anmerkung:

* Bei Modus "Dreieckschaltung" zeigt das Display "–".

6.7.3 Taster "ENERGY"

Anzeigen in der vierten Zeile:

Spalte links	Spalte rechts	Wert
	kWh	Wirkenergiebezug
	kWh	Wirkenergieexport
	kvarh	Blindenergiebezug
	kvarh	Blindenergieexport
S		Scheinenergie

Tab. 6.3: Anzeigemöglichkeiten über Taster "ENERGY"

6.8 Datenanzeige bei Einphasen-Schaltungen

Die Anzeige der Messdaten erfolgt über die drei Taster "SYSTEM", "PHASE" und "ENERGY". Die folgenden Tabellen zeigen, wie die einzelnen Werte bei den Einstellungen "1P2W" oder "1P3W" (Einstellung Menüpunkt TYPE, Register 41012) abgerufen werden können.

6.8.1 Taster "SYSTEM"

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
	A W PF	ØI	$P_{\rm ges}$	Leistungs- faktor λ _{ges}
Lլ	V kvar Hz	Ø U _{LL} *	Q_{ges}	f
	kW kvar kVA	$P_{ m ges}$	Q_{ges}	S _{ges}

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
I	А	Bedarf I ₁	Bedarf I ₂ *	
D M D	kW kvar kVA	Bedarf P	Bedarf Q	Bedarf S

Tab. 6.4: Anzeigemöglichkeiten über Taster "SYSTEM"

Bemerkungen:

^{*} Bei 1P2W: Anzeige "--"

6.8.2 Taster "PHASE"

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
	A A	I ₁	I ₂ *	
1 _N * 2 _N *	V V	U_{L1}	U _{L2} *	
12*	V V	U _{L1L2*}		
	kW kW	P _{L1}	P _{L2} *	
	var var	Q_{L1}	Q _{L2} *	
	kVA kVA	S _{L1}	S _{L2} *	
	PF PF	λ_{L1}	λ _{L2} *	
d P F	PF PF	Verschiebungs- faktor cos (φ) _{L1}	Verschiebungs- faktor cos (φ) _{L2} *	
U T	% %	THD U_{L1}	THD U _{L2} *	

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile
T	% %	THD I ₁	THD <i>I</i> ₂ *	
K F		k-Faktor / ₁	k-Faktor I ₂ *	
U* 		Phasenwinkel <i>U</i> _{L1} *	Phasenwinkel <i>U</i> _{L2} *	
I*		Phasenwinkel I ₁ *	Phasenwinkel I ₂ *	

Tab. 6.5: Anzeigemöglichkeiten über Taster "Phase"

6.8.3 Taster "ENERGY"

Anzeigen in der vierten Zeile:

Spalte links	Spalte rechts	Wert
	kWh	Wirkenergiebezug
	kWh	Wirkenergieexport
	kvarh	Blindenergiebezug
	kvarh	Blindenergieexport
S		Scheinenergie

Tab. 6.6: Anzeigemöglichkeiten über Taster "ENERGY"

^{*} nicht bei 1P2W

6.9 Setup über Taster am Gerät

Um in den Setupmodus zu gelangen, drücken Sie den Taster "SETUP" (> 3 s). Die Rückkehr in den Anzeigemodus erfolgt ebenfalls über den Taster "SETUP" (> 3 s).

Zum Verändern von Parametern müssen Sie zuerst das **Passwort eingeben.** (Werkseinstellung: 0)

6.9.1 Setup: Bedeutung der Taster

Die Bedeutungen der Taster im Setupmodus stehen unter den Tastern auf der Frontseite:

"SETUP" Entertaste: Bestätigung der Eingabe

"PHASE" Pfeiltaste " 🔨 ": Wechsel im Menü nach oben bzw. Erhöhen

eines Zahlenwertes

"ENERGY" Pfeiltaste " V":Wechsel im Menü nach unten bzw. Senken

eines Zahlwertes.

"SYSTEM" Pfeiltaste " < ": setzt den Cursor bei numerischen Werten

eine Stelle nach links

6.9.2 Setup: Übersichtsdiagramm Menü

Das folgende Diagramm erleichtert Ihnen die Orientierung in den Menüs:

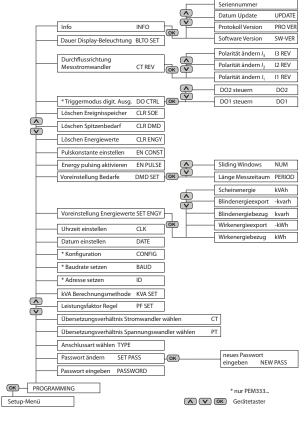


Abb. 6.7: Setup: Einstellmöglichkeiten

6.10 Setup: Einstellmöglichkeiten

Die Tabelle stellt die im Display angezeigten Meldungen, deren Bedeutung und die Einstellmöglichkeiten dar.

Display-Eintrag Ebene 1 Ebene 2	Parameter	Beschreibung	Einstell- möglich- keiten	Werks- ein- stellung
PROGRAMMING		Setup-Modus		
PASSWORD	Passwort	Passwort einge- ben	/	0
SET PASS		Passwort ändern?	YES/NO	NO
NEW PASS	neues Pass- wort	neues Pass- wort angeben	00009999	0
TYPE		Anschlussart wählen	WYE/DELTA/ DEMO/1P3W/ 1P2W	WYE
PT		Übersetzungs- verhältnis Spannungs- wandler wäh- len	12200	1
СТ		Übersetzungs- verhältnis Messstrom- wandler wäh- len	130.000 (1 A) 16.000 (5 A)	1
PF SET	Leistungs- faktor- Konvention	Leistungs- faktor-Konven- tion***	IEC/IEEE/-IEEE	IEC
KVA SET		S-Berechnungs- methode *	V/S	V

Display-Eintrag Ebene 1 Ebene 2	Parameter	Beschreibung	Einstell- möglich- keiten	Werks- ein- stellung
ID	Adresse Messgerät	Adresse Mess- gerät setzen	1-247	100
BAUD	Baudrate	Baudrate setzen	1200/2400/ 4800/9600/ 19200 bps	9600
CONFIG	Comm. Port Konfigura- tion	Konfiguration Paritätbit	8N2/8O1/8E1/ 8N1/8O2/8E2	8E1
DATE	Datum	Datum einstel- Ien	YY-MM-DD	/
CLK	Uhrzeit	Uhrzeit einstel- Ien	HH:MM:SS	/
SET ENGY	Voreinstel- lung Energie- werte	Voreinstellung Energiewerte	YES/NO	NO
kWh	Wirkenergie- bezug	Voreinstellung Wirkenergiebe- zug	0 99.999.999,99	0
-kWh	Wirkenergie- export	Voreinstellung Wirkenergieex- port	0 99.999.999,99	0
kvarh	Blind- energie- bezug	Voreinstellung Blindenergie- bezug	0 99.999.999,99	0
-kvarh	Blind- energie- export	Voreinstellung Blindenergieex- port	0 99.999.999,99	0
kVAh	Schein- energie	Voreinstellung Scheinenergie	0 99.999.999,99	0

Display-Eintrag Ebene 1 Ebene	Parameter 2	Beschreibung	Einstell- möglich- keiten	Werks- ein- stellung
DMD SET	Bedarfsmes- sung	Bedarfsmes- sung ein/aus	YES/NO	NO
PERIO	D Länge Mess- zeitraum	Länge Mess- zeitraum für Bedarfsmes- sung einstellen	1, 2, 3, 5, 10, 15, 30, 60 (Minu- ten)	15
NUI	A Anzahl Sliding Windows	Anzahl Sliding Windows einstellen	115	1
EN PULSE	Energy Pul- sing	kWh und kvar Energy pulsing aktivieren	YES/NO	NO
EN CONST	Puls- konstante	Anzahl der LED- Pulse je Ener- giemenge	1K, 3,2K, 5K, 6,4K**, 12,8K**	1K
CLR ENGY	Löschen Energiewerte	kWh, kvar und kVAh löschen	YES/NO	NO
CLR DMD	Löschen Spit- zenbedarf	Löschen Werte Spitzenbedarf	YES/NO	NO
CLR SOE	Löschen Ereignisspei- cher	Löschen Ereig- nisspeicher	YES/NO	NO
DO CTRL	Triggermo- dus digitale Ausgänge	Triggermodus digitale Aus- gänge ändern	YES/NO	NO
DO	1 Betriebsart DO1	Betriebsart DO1 einstellen	NORMAL/ON/ OFF	NORMAL
DO	2 Betriebsart DO2	Betriebsart DO2 einstellen	NORMAL/ON/ OFF	NORMAL

Display-Eintrag Ebene 1 Ebene 2	Parameter	Beschreibung	Einstell- möglich- keiten	Werks- ein- stellung
CT REV	Auswahl Richtung Messstrom- wandler	Richtung Mess- stromwandler ändern	YES/NO	NO
I1 REV	I ₁ CT	I ₁ Messstrom- wandler Polari- tät ändern	YES/NO	NO
I2 REV	I ₂ CT	<i>I</i> ₂ Messstrom- wandler Polari- tät ändern	YES/NO	NO
I3 REV	I ₃ CT	<i>I</i> ₃ Messstrom- wandler Polari- tät ändern	YES/NO	NO
BLTO SET	Displaybe- leuchtung	Zeitdauer, bis Display dunkel	0-59 (Minuten)	3
INFO	Informatio- nen	nur lesen	YES/NO	NO
SW-VER	Software Version		/	/
PRO VER	Protokoll Version	50 bedeutet V5.0	/	/
UPDATE	Datum Soft- ware-Update	jjmmtt	/	/
	Serien- nummer	Seriennummer Gerät	/	/

Tab. 6.7: Einstellmöglichkeiten Setup

Anmerkungen zur obigen Tabelle

* Es gibt zwei verschiedene Arten zur Berechnung der Scheinleistung S:

Vektormethode V:

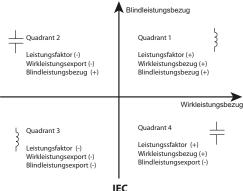
Skalarmethode S:

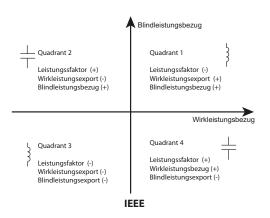
$$S_{\text{ges}} = -\sqrt{P_{\text{ges}}^2 + Q_{\text{ges}}^2}$$

$$S_{\rm ges} = S_{\rm L1} + S_{\rm L2} + S_{\rm L3}$$

Die Art der Berechnung ist wählbar:

V = Vektormethode


S = Skalarmethode


**

nur PEM33x-251...

*** Leistungsfaktor λ Konventionen

Messstromwandlerverhältnis einstellen Beispiel: Messtromwandler 1000 : 5 (= 200)

Taster	Anzeige Display	Beschreibung
SETUP > 3 s	PROGRAMMING	
٨	PASSWORD ****	
ОК	PASSWORD 0	0 blinkt
OK (oder Passwort)	PASSWORT 0	
٨	SET PASS NO	
٨	TYPE WYE	
^	PT 1	
^	CT 1	
ОК	CT 1	1 blinkt
V	CT ERR 0	0 blinkt (Einerstelle)
<	CT ERR 00	linke 0 blinkt (Zehnerstelle)
<	CT ERR 0 0	linke 0 blinkt (Hunderterstelle)
$\wedge \wedge$	CT 200	2 blinkt
ОК	CT 200	Verhältnis 200 eingestellt
SETUP > 3 s	Standardanzeige	

7. Anwendung / Ein- und Ausgänge

7.1 Digitale Eingänge (nur PEM333...)

Das Gerät bietet zwei digitale Eingänge, die intern mit DC 24 V betrieben werden.

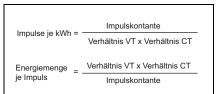
Digitale Eingänge werden in der Regel zur Überwachung externer Zustände verwendet. Die Schaltzustände der digitalen Eingänge können im LC-Display oder an angeschlossenen Systemkomponenten abgelesen werden. Änderungen externer Zustände werden im Ereignisspeicher (SOE-Log) als Ereignisse mit einer Auflösung von 1 ms gespeichert.

7.2 Digitale Ausgänge (nur PEM333)

Das Gerät bietet zwei Relais-Ausgänge. Digitale Ausgänge werden in der Regel als Alarm beim Auslösen von Setpoints, zur Laststeuerung oder für ferngesteuerte Anwendungen eingesetzt.

Beispiele:

- Bedienung über Tasten auf der Vorderseite (siehe "Setup über Taster am Gerät" auf Seite 51
- 2. Bedienung über Kommunikationsschnittstelle
- 3. Steuer-Setpoints: Ansteuerung bei Sollwert-Verletzung


7.3 Anzeige Energy pulsing

Die beiden LED-Pulsausgänge werden für kWh- und kvarh-Anzeige verwendet, wenn die Funktion EN PULSE aktiviert ist. Dies kann im Setup-Menü mit den Tastern auf der Vorderseite oder über die Kommunikationsschnittstelle (nur PEM333...) eingestellt werden.

Die LEDs blinken jedesmal auf, sobald eine bestimmte Energiemenge (1 kWh bzw. 1 kvarh) gemessen wurde.

Um die Blinkfrequenz in Relation zur Energiemenge zu bringen, müssen die Wandlerverhältnisse und die Pulskonstante berücksichtigt werden.

Anmerkung:

VT = Spannungswandler CT = Messstromwandler

7.4 Digitale Pulsausgänge (nur PEM333-...P)

Das Gerät bietet zwei digitale Pulsausgänge für kWh und kvarh, die über die Funktion EN PULSE aktiviert werden. Diese verhalten sich wie die LED-Pulsausgänge: Sobald eine bestimmte Energiemenge (1 kWh bzw. 1 kvarh) gemessen wurde, wird über die Ausgänge ein Signal zur Weiterbearbeitung gegeben.

Digitale Pulsausgänge werden in der Regel für Genauigkeitstests verwendet.

7.5 Leistung und Energie

7.5.1 Phasenwinkel von Spannung und Strom

Die Phasenwinkel-Analyse dient zur Bestimmung des Winkels zwischen den Spannungen und Strömen der drei Außenleiter.

7.5.2 Energie

Zu den Basis-Energieparametern zählen

- Wirkenergie (Bezug und Export in kWh)
- Blindenergie (Bezug und Export in kvar)
- Scheinenergie (S_{aes} in kVAh)

Der maximal anzeigbare Wert ist \pm 99.999,999,9. Ist der Maximalwert erreicht, springt das Register wieder auf 0. Der Zählerwert ist über Software (nur PEM333...) und die Taster auf der Frontseite passwortgeschützt editierbar.

7.5.3 Bedarf (Demand DMD)

Der Bedarf ist definiert als durchschnittlicher/gemittelter Stromverbrauch bzw. Leistung in einem festgelegten Messzeitraum. Es werden Werte ermittelt für

- Wirkleistung P
- Scheinleistung S
- Blindleistung Q
- I₁
- I₂
- I₃

Die Länge des Messzeitraums ist einstellbar über die Taster auf der Frontseite oder über die Kommunikationsschnittstelle. Folgende Werte stehen zur Auswahl:

1, 2, 3, 5, 10, 15, 30, 60 Minuten

Während des ausgewählten Messzeitraums wird der Stromverbrauch bzw. die importierte Leistung gemessen. Anschließend wird der Mittelwert auf dem Display als Bedarf angezeigt und über die Kommunikationsschnittstelle ausgegeben. Der während des gesamten Aufzeichnungszeitraums ermittelte Maximalwert des Bedarfs (Spitzenbedarf/peak demand) wird gespeichert und über die Kommunikationsschnittstelle ausgegeben. Der Spitzenbedarf kann per Modbus zurückgesetzt werden.

Für Einstellmöglichkeiten siehe "Setup: Einstellmöglichkeiten" auf Seite 53 ff.

7.6 Setpoints (nur PEM333...)

Das Gerät hat 6 vom Benutzer frei programmierbare Steuer-Setpoints, die eine umfassende Steuerung der Reaktion auf festgelegte Ereignisse bieten. Das Alarmsymbol $\mathbb{Q} \subset \mathbb{Q}$ in der unteren Zeile des LC-Displays erscheint, wenn es erreichte/aktive Setpoints gibt. Typischerweise ist die Reaktion auf das Erreichen eines Setpoints ein Alarm und eine Fehlersuche.

Setpoints werden über die **Kommunikationsschnittstelle** programmiert. Es gibt folgende **Setup-Parameter:**

 Setpoint-Art: legt die zu ermittelnden Parameter sowie die Art der Ermittlung fest (Wertüber- oder -unterschreitung).

Folgende Einstellungen sind möglich:

Setpoint-Art	Parameter
Wertüberschreitung	Strangspannung <i>U</i> _{LN} (x100 V)
	Außenleiterspannung <i>U</i> _{LL} (x100 V)
	I (x1000 A)
	P _{ges} (x1000 kW)
	Q _{ges} (x1000 kvar)
Wertunterschreitung	Strangspannung <i>U</i> _{LN} (x100 V)
	Außenleiterspannung U _{LL} (x100 V)
	Leistungsfaktor λ (x1000)

 Setpointgrenze: Legt die unteren bzw. oberen Grenzen fest, bei deren Verletzung der Setpoint aktiv wird. Die Rückkehr in den Normalzustand erfolgt bei

> Wertüberschreitung: 0,95 x Setpointlimit Wertunterschreitung: 1,05 x Setpointlimit , O und λ können als Setpointgrenzen auch n

Für P,Q und λ können als Setpointgrenzen auch negative Werte gesetzt werden.

- 3. Setpointverzögerung: Legt die minimale Zeitspanne fest,
- die ein Wert den Alarmwert verletzt haben muss, um eine Aktion auszulösen bzw.
- die ein Wert die Bedingungen für die Rückkehr in den Normalzustand erfüllt haben muss.

Jede Statusänderung eines Setpoints generiert einen Eintrag im Ereignisspeicher. Die Angabe der Setpointverzögerung erfolgt in Sekunden und kann einen Wert zwischen 0 und 9.999 Sekunden einnehmen.

 Setpoint Trigger: Legt fest, welche Aktion der Setpoint beim Erreichen auslöst. Diese Aktion schließt "No Trigger" und "Trigger DOx" mit ein.

7.7 Ereignisspeicher (SOE-Log)

Das Gerät kann bis zu 32 Ereignisse speichern. Die Speicherung erfolgt nach dem FIFO-Prinzip (first in, first out): Das 33. Ereignis überschreibt den ersten Eintrag, der 34. den zweiten usw. Ereignisse können sein:

- Ausfall Versorgungsspannung
- Änderung des Setpoint-Status
- Relaisaktionen
- Änderungen des Status der digitalen Eingänge
- Setupänderungen

Jeder Ereigniseintrag enthält die Ereignis-Klassifizierung, die relevanten Parameterwerte und einen Zeitstempel mit einer Auflösung von 1 ms.

Alle Ereigniseinträge können auch per Kommunikationsschnittstelle abgerufen werden (nur PEM333).

Der Ereignisspeicher kann sowohl über die Taster auf der Frontseite als auch über die Kommunikationsschnittstelle (nur PEM333) gelöscht werden.

7.8 Power Quality

7.8.1 Gesamt-Oberschwingungsverzerrung

Das Gerät bietet eine Analyse der harmonischen Verzerrung (Gesamt-Oberschwingungsverzerrung). Alle Parameter können sowohl im Display abgelesen als auch über die Kommunikationsschnittstelle (nur PEM333) zur Verfügung gestellt werden. Folgende Parameter werden unterstützt:

Ober- schwin- gungen		Gesamt-Oberschwingungsverzerrung U_{L2}	
	Gesamt-Oberschwin- gungsverzerrung <i>I</i> ₁	Gesamt-Oberschwin- gungsverzerrung <i>l</i> ₂	Gesamt-Oberschwin- gungsverzerrung I ₃
	k-Faktor I ₁	k-Faktor I ₂	k-Faktor I ₃

7.8.2 Unsymmetrie

Das Gerät kann Spannungs- und Stromunsymmetrien messen. Folgende Berechnungsmethode wird angewandt:

Spannungs-
unsymmetrie
$$= \frac{[|U_{L1} - \varnothing U|, |U_{L2} - \varnothing U|, |U_{L3} - \varnothing U|]_{max}}{\varnothing U} \times 100 \%$$

Strom-
unsymmetrie =
$$\frac{[|l_1 - \emptyset l|, |l_2 - \emptyset l|, |l_3 - \emptyset l]_{max}}{\emptyset l} \times 100 \%$$

Hinweis: Ø bezeichnet den Durchschnittswert (average)

8. Modbus Register Übersicht

Dieses Kapitel bietet eine vollständige Beschreibung der Modbus-Register (Protokoll-Version 6.0) für die PEM330/PEM333-Serie, um den Zugriff auf Informationen zu erleichtern. In der Regel werden die Register als Modbus-Nur-Lese-Register (RO = read only) implementiert. Eine Ausnahme bilden die DO-Steuerregister, die nur schreibende Funktion haben (WO = write only). PEM330/PEM333 unterstützt die 6-stellige Adressierung und folgende Modbusfunktionen:

- Halteregister zum Auslesen von Werten (Read Holding Register; Funktionscode 0x03)
- Register zum Setzen von DO-Status (Force Single Coil; Funktionscode 0x05)
- Register zur Geräteprogrammierung (Preset Multiple Registers; Funktionscode 0x10)

Die Register-Adressen werden ohne das Präfix für die Modbus-Adresse (4 für Holding-Register; 0 für Coil-Register) aufgeführt.

Für eine komplette Modbus-Protokoll-Spezifikation besuchen Sie bitte www.modbus.org.

8.1 Basis-Messwerte

Register	Eigen- schaft	Beschreibung	Format	Skalierung/ Einheit
40000	RO	U _{L1} 1)	UINT32	x100 V ²⁾
40002	RO	U _{L2} 1)	UINT32	x100 V
40004	RO	U _{L3} 1)	UINT32	x100 V
40006	RO	Ø U _{LN}	UINT32	x100 V
40008	RO	U _{L1L2}	UINT32	x100 V
40010	RO	U_{L2L3}	UINT32	x100 V
40012	RO	U _{L3L1}	UINT32	x100 V
40014	RO	Ø U _{LL}	UINT32	x100 V
40016	RO	I ₁	UINT32	x1000 A
40018	RO	I ₂	UINT32	x1000 A
40020	RO	I ₃	UINT32	x1000 A
40022	RO	ØI	UINT32	x1000 A
40024	RO	P _{L1} 1)	INT32	x1000 kW
40026	RO	P _{L2} 1)	INT32	x1000 kW
40028	RO	P _{L3} 1)	INT32	x1000 kW

Register	Eigen- schaft	Beschreibung	Format	Skalierung/ Einheit
40030	RO	P_{ges}	INT32	x1000 kW
40032	RO	Q _{L1} 1)	INT32	x1000 kvar
40034	RO	Q _{L2} 1)	INT32	x1000 kvar
40036	RO	Q _{L3} 1)	INT32	x1000 kvar
40038	RO	Q _{ges}	INT32	x1000 kvar
40040	RO	S _{L1} 1)	INT32	x1000 kVA
40042	RO	S _{L2} 1)	INT32	x1000 kVA
40044	RO	S _{L3} 1)	INT32	x1000 kVA
40046	RO	S _{ges}	INT32	x1000 kVA
40048	RO	$\lambda_{L1}^{-1)}$	INT16	x1000
40049	RO	λ _{L2} 1)	INT16	x1000
40050	RO	λ _{L3} 1)	INT16	x1000
40051	RO	λ_{ges}	INT16	x1000
40052	RO	f	UINT16	x100 Hz
40053	RO	I ₄	UINT32	x1000 A

Register	Eigen- schaft	Beschreibung	Format	Skalierung/ Einheit
40055	RO	Unsymmetrie Spannung	UINT16	x1000
40056	RO	Unsymmetrie Strom	UINT16	x1000
40057	RO	Verschiebungsfaktor L1	INT16	x1000
40058	RO	Verschiebungsfaktor L2	INT16	x1000
40059	RO	Verschiebungsfaktor L3	INT16	x1000
40060	RO	Bedarf P	INT32	x1000 kW
40062	RO	Bedarf Q	INT32	x1000 kvar
40064	RO	Bedarf S	INT32	x1000 kVA
40066	RO	Bedarf I ₁	UINT32	x1000 A
40068	RO	Bedarf I ₂	UINT32	x1000 A
40070	RO	Bedarf I ₃	UINT32	x1000 A
40072	RO	Phasenwinkel <i>U</i> ₁	UINT16	x100°
40073	RO	Phasenwinkel U ₂	UINT16	x100°
40074	RO	Phasenwinkel U ₃	UINT16	x100°
40075	RO	Phasenwinkel I ₁	UINT16	x100°
40076	RO	Phasenwinkel I ₂	UINT16	x100°

Register	Eigen- schaft	Beschreibung	Format	Skalierung/ Einheit	
40077	RO	Phasenwinkel I ₃	UINT16	x100°	
40078 40094	Reserviert				
40095	RO	Alarm ³⁾	Bitmap		
40096	RO	Status digitale Ausgänge ⁴⁾	Bitmap		
40097	RO	Status digitale Eingänge ⁵⁾	Bitmap		
40098	RO	SOE-Pointer ⁶⁾	UNIT32		

Tab. 8.1: Basis-Messwerte

Hinweise:

- 1) Nur bei Verwendung einer Sternschaltung (WYE).
- 2) "x100 V" bedeutet, dass der gelieferte Spannungswert des Registers 100 mal größer ist als der Messwert (der Wert des Registers muss also durch 100 geteilt werden, um den Messwert zu erhalten).

Das Alarmregister 40095 zeigt die verschiedenen Alarmzustände an (1 = aktiv, 0 = inaktiv). Die Tabelle stellt Details des Alarmregisters dar.

Bit in Register 40095	Alarm durch Ereignis
B0B2	Reserviert
B3	Setpoint 1
B4	Setpoint 2
B5	Setpoint 3
B6	Setpoint 4
B7	Setpoint 5
B8	Setpoint 6
alle anderen Bits	Reserviert

Tab. 8.2: Bitfolge Alarmregister (40095)

4) Statusregister 40096:

Stellt den **Status der beiden digitalen Ausgänge** dar B0 für DO1 (1 = aktiv/geschlossen; 0 = inaktiv/geöffnet) B1 für DO2 (1 = aktiv/geschlossen; 0 = inaktiv/geöffnet)

5) Statusregister 44097:

Stellt den **Status der beiden digitalen Eingänge** dar B0 für DI1 (1 = aktiv/geschlossen; 0 = inaktiv/geöffnet) B1 für DI2 (1 = aktiv/geschlossen; 0 = inaktiv/geöffnet)

Der Ereignisspeicher kann bis zu 32 Ereignisse speichern. Er funktioniert wie ein Ringpuffer nach dem FIFO-Prinzip: das 33. Ereignis überschreibt den ersten Wert, das 34. den zweiten und so weiter. Ein Reset des Ereignisspeichers kann in den Setup-Parametern (siehe Seite 55)vorgenommen werden.

8.2 Energie-Messung gesamt

Register	Eigenschaft	Beschreibung	Format	Einheit
40100	RW	Wirkenergiebezug	UINT32	x0,1 kWh
40102	RW	Wirkenergieexport	UINT32	x0,1 kWh
40104	Reserviert			
40106	RW Blindenergiebezug		UINT32	x0,1 kvarh
40108	RW	Blindenergieexport	UINT32	x0,1 kvarh
40110	Reserviert			
40112	RW	Scheinenergie	UINT32	x0,1 kVAh

Tab. 8.3: Energiemessung

Hinweis: Nach Erreichen des Maximalwerts von 99.999.999 kWh/kvarh/kVAh beginnt die Messung wieder bei 0.

8.3 Energie-Messung je Phase

Register	Eigen- schaft	Beschreibung	Format	Einheit			
40200	RW	Wirkenergiebezug L1	UINT32	x0,1 kWh			
40202	RW	Wirkenergieexport L1		x0,1 kWh			
40204		Reserviert					
40206		Reserviert					

Register	Eigen- schaft	Beschreibung	Format	Einheit	
40208	RW	Blindenegiebezug L1		x0,1 kvarh	
40210	RW	Blindenergieexport L1		x0,1 kvarh	
40212		Reserviert			
40214		Reserviert			
40216	RW	Scheinenergie L1	UINT32	x0,1 kVAh	
40218	RW	Wirkenergiebezug L2	UINT32	x0,1 kWh	
40220	RW	Wirkenergieexport L2		x0,1 kWh	
40222	Reserviert				
40224	Reserviert				
40226	RW	Blindenegiebezug L2		x0,1 kvarh	
40228	RW	Blindenergieexport L2		x0,1 kvarh	
40230		Reserviert			
40232		Reserviert			
40234	RW	Scheinenergie L2	UINT32	x0,1 kVAh	
40236	RW	Wirkenergiebezug L3	UINT32	x0,1 kWh	
40238	RW	V Wirkenergieexport L3		x0,1 kWh	
40240	Reserviert				

Register	Eigen- schaft Beschreibung		Format	Einheit	
40242		Reserviert			
40244	RW	Blindenegiebezug L3		x0,1 kvarh	
40246	RW	Blindenergieexport L3		x0,1 kvarh	
40248		Reserviert			
40250	Reserviert				
40252	RW	Scheinenergie L3	UINT32	x0,1 kVAh	

Tab. 8.4: Energie-Messung je Phase

8.4 Spitzenbedarf

Der Wert des Spitzenbedarf-Registers ist der aktuelle Wert x1.000, d. h. um den Wert in kW, kVA oder kvar zu erhalten, muss der Wert des Registers durch 1000 geteilt werden.

Register	Eigenschaft	Beschreibung	Format
40500	RO	Spitzenbedarf P	siehe
40504	RO	Spitzenbedarf Q	Tabelle 8.6
40508	RO	Spitzenbedarf S	
40512	RO	Spitzenbedarf I ₁	
40516	RO	Spitzenbedarf I_2	
40520	RO	Spitzenbedarf I ₃	

Tab. 8.5: Spitzenbedarf

Datenstruktur Spitzenbedarf

Struktur Register 4050040520	Beschreibung
Register 1	Spitzenbedarf HiWord
Register 2	Spitzenbedarf LoWord
Register 3	UNIX-Zeit HiWord
Register 4	UNIX-Zeit LoWord

Tab. 8.6: Datenstruktur Spitzenbedarf

8.5 Gesamt-Oberschwingungsverzerrung (THD) und k-Faktor

Gesamt-Oberschwingungsverzerrung (THD): Der zurückgegebene Wert ist 10.000 x größer als der Messwert.

Beispiel: Anzeige "1031" bedeutet 1031/10.000 = 0,1031 oder 10,31 %

k-Faktor: Der zurückgegebene Wert ist 10x größer als der Messwert.

Register	Eigen- schaft	Beschreibung	Format	Faktor
40703	RO	k-Faktor I ₁	UINT16	x10
40704	RO	k-Faktor I ₂	UINT16	x10
40705	RO	k-Faktor I ₃	UINT16	x10
4070640717		Reserviert		
40718	RO	THD U _{L1}	UINT16	x10000
40719	RO	THD U _{L2}	UINT16	x10000
40720	RO	THD U _{L3}	UINT16	x10000
40721	RO	THD I ₁	UINT16	x10000
40722	RO	THD I ₂	UINT16	x10000
40723	RO	THD I ₃	UINT16	x10000

Tab. 8.7: Messung Oberschwingungen und k-Faktor

8.6 Erkennung Anschlussfehler

Das Universalmessgerät kann Anschlussfehler nicht nur erkennen, sondern auch die Art des Fehlers diagnostizieren.

Register	Eigen- schaft	Beschreibung	Format
40900	RO	Erkennung Anschlussfehler	UINT16

Das Diagnosebit zeigt die Art des Anschlussfehlers an. Ist der Wert des Bits = 1, so ist ein Fehler erkannt worden.

Bit	Ereignis
B00	Summenbit (gesetzt, wenn kein anderes Bit gesetzt ist)
B01 ¹⁾	Frequenzbereich 4070 Hz verletzt
B02 ²⁾	Diagnose nicht möglich, da Spannung einer Phase $<$ 10 % U_{nom}
B03	Diagnose nicht möglich, da Ströme aller drei Phasen $< 1 \% I_{nom}$
B04	Reserviert
B05	Reserviert
B06	unerwartetes Drehfeld Spannung
B07	unerwartetes Drehfeld Strom
B08	Richtung P _{L1} eventuell falsch

Bit	Ereignis
B09	Richtung P _{L2} eventuell falsch
B10	Richtung P _{L3} eventuell falsch
B11	Polarität Messstromwandler I ₁ vertauscht?
B12	Polarität Messstromwandler I ₂ vertauscht?
B13	Polarität Messstromwandler I ₃ vertauscht?
B14	Reserviert
B15	Reserviert

Tab. 8.8: Details Diagnosebit "Anschlussfehlererkennung"

Bemerkungen:

1)	Wenn B01 auf 1 gesetzt ist, wird die Fehlererkennung nicht
2)	ausgeführt.
2)	Wenn die beiden Bits B02 und B03 auf 1 gesetzt sind, wird
	die Fehlererkennung nicht ausgeführt.

8.7 Setup Parameter

Register	Eigen- schaft	Beschreibung	Format	Bereich/Einheit
4100041006	Reserviert			
41007	RW	Aktivieren "ARM before EXECUTING"	UINT16	0 = deaktiviert 1* = aktiviert
4100841009		Rese	rviert	
41010	RW	Übersetzungsver- hältnis Spannungs- wandler	UINT16	12200 (100*)
41011	RW	Übersetzungsver- hältnis Messstrom- wandler	UINT16	16000 (Stromeingang 5 A) 130000 (Stromeingang 1 A) (1000*)
41012	RW	Schaltungsart	UINT16	0 = WYE* 1 = DELTA 2 = DEMO 3 = 1P3W 4 = 1P2W
41013	RW	Geräteadresse	UINT16	1247 (100*)
41014	RW	Baudrate	UINT16	1 = 1200 2 = 2400 3 = 4800 4 = 9600* 5 = 19200
41015	RO	Parität	UINT16	0 = 8N2; 1 = 8O1 2 = 8E1*; 3 = 8N1 4 = 8O2; 5 = 8E2

Register	Eigen- schaft	Beschreibung	Format	Bereich/Einheit	
41016 41018		Reserviert			
41019	WO	alle Speicher der Energiewerte löschen	UINT16	Eintrag 0xFF00 in das Register löscht die Werte für <i>P, Q</i> und <i>S</i>	
41020	WO	Ereignisspeicher löschen	UINT16	Eintrag 0xFF00 in das Register setzt den Pointer des Ereignisspeichers auf 0	
41021 41024		Rese	rviert		
41025	RW	Setpoint 1	Daten-		
41029	RW	Setpoint 2	struktur Set-		
41033	RW	Setpoint 3	point ¹⁾		
41037	RW	Setpoint 4]		
41041	RW	Setpoint 5			
41045	RW	Setpoint 6			
41049 41052		Rese	rviert		
41053	RW	Leistungsfaktor- Konvention	UINT16	B1B0: 00* = IEC 01 = IEEE 10 = -IEEE	
41054	RW	Berechnungs- methode S	UINT16	B1B0: 00* = Vektor 01 = Skalar	
41055		Rese	rviert		

Register	Eigen- schaft	Beschreibung	Format	Bereich/Einheit
41056	RW	Polarität Mess- stromwandler L1	UINT16	0* = Normal 1 = Reversed
41057	RW	Polarität Mess- stromwandler L2	UINT16	0* = Normal 1= Reversed
41058	RW	Polarität Mess- stromwandler L3	UINT16	0* = Normal 1 = Reversed
4105941222		Rese	rviert	
41223	RW	Messzeitraum Bedarfsmessung	UINT16	1, 2, 3, 5, 10, 15*, 30, 60 Minuten
41224		Rese	rviert	
41225	RW	Drehfeld	UINT16	0* = ABC rechts 1 = CBA links
41226	WO	Wert Spitzenbe- darf löschen	UINT16	Eintrag "0xFF00" setzt den Wert für den Spitzenbedarf auf 0
41227	WO	Reset Max-/Min- Speicher	UINT	Eintrag "0xFF00" setzt den Wert für den Max-/Min- Speicher auf 0

Tab. 8.9: Setup Parameter

Interne Datenstruktur Setpoint

Die folgende Tabelle stellt die interne Datenstruktur der 4 Register dar, die zu jedem Setpoint gehören.

^{* =} Werkseinstellung

Register 4102541045	Format	Beschreibung	
Register 1 (LoByte)	UINT16	>-Setpoint Setpoint überschrit- ten: $1 = U_{LN'}$ $2 = U_{LL'}$ 3 = I $4 = P_{ges}$ $5 = Q_{ges}$	<-Setpoint Setpoint unterschritten: $6 = U_{LN}$ $7 = U_{LL}$ $8 = \lambda_{ges}$
Register 1 (HiByte)		Setpoint Trigger: $0 = N$ 1 = Trigger DO1, $2 = T$	33 .
Register 2	UINT32	Setpoint-Grenzen	
Register 3			
Register 4	UINT16	Setpoint-Verzögerung	: 09999 (Sekunden)

Tab. 8.10: Interne Datenstruktur Setpoint

Die angezeigten Werte sind 100 bzw. 1000 x größer als die Messwerte.

Beispiel:

gewünschter Setpoint für λ ist 0,866; einzustellender Wert: 0,866 x1000 = 866.

 $\begin{array}{lll} U_{\rm LL} & ({\rm x}100~{\rm V}) \\ U_{\rm LN} & ({\rm x}100~{\rm V}) \\ I & ({\rm x}1000~{\rm A}) \\ P_{\rm ges} & ({\rm x}1000~{\rm kW}) \\ Q_{\rm ges} & ({\rm x}1000~{\rm kvar}) \\ {\rm Leistungsfaktor}~\lambda~({\rm x}1000) \end{array}$

Für P, Q und λ können als Setpointgrenzen auch negative Werte gesetzt werden.

8.8 Ereignisspeicher (SOE-Log)

Jeder Eintrag im Ereignisspeicher belegt 7 Register, wie die folgende Tabelle zeigt. Die interne Datenstruktur des Ereignisspeichers ist in Tabelle 8.12 auf Seite 85 aufgeführt.

Register	Eigenschaft	Beschreibung	Format
4200042006	RO	Ereignis 1	siehe
4200742013	RO	Ereignis 2	Tabelle 8.12
4201442020	RO	Ereignis 3	
4202142027	RO	Ereignis 4	
4202842034	RO	Ereignis 5	
4203542041	RO	Ereignis 6	
4204242048	RO	Ereignis 7	
4204942055	RO	Ereignis 8	
4205642062	RO	Ereignis 9	
4206342069	RO	Ereignis 10	
4221742223	RO	Ereignis 32	

Tab. 8.11: Ereignisspeicher (SOE-Log)

Datenstruktur Ereignis

Die folgende Tabelle stellt die interne Datenstruktur der 7 Register dar, die zu jedem Eintrag im Ereignisspeicher (SOE-Log) gehören.

Register	Eigenschaft	Beschreibung
Register 1	RO	Reserviert
Register 2	RO	Ereignis-Klassifizierung (siehe Tabelle 8.13 auf Seite 87ff.)
Register 3	RO	Ereignis Wert HiWord
Register 4	RO	Ereignis Wert LoWord
Register 5	RO	Ereignis Zeit (Millisekunden) 0999
Register 6	RO	Ereignis Zeitstempel HiWord (UNIX-Zeit in Sekunden)
Register 7	RO	Ereignis Zeitstempel LoWord (UNIX-Zeit in Sekunden)

Tab. 8.12: Interne Datenstruktur Ereignis

Ereignis-Klassifizierung

Ereignis- Klassifizierung	Bedeutung
1	Digitaler Eingang 1 geschlossen
2	Digitaler Eingang 1 geöffnet

Ereignis- Klassifizierung	Bedeutung
3	Digitaler Eingang 2 geschlossen
4	Digitaler Eingang 2 geöffnet
510	Reserviert
11	Digitaler Ausgang 1 geschlossen
12	Digitaler Ausgang 1 geöffnet
13	Digitaler Ausgang 2 geschlossen
14	Digitaler Ausgang 2 geöffnet
1521	Reserviert
22	Ausfall Versorgungsspannung
2330	Reserviert
31	Setup geändert über Gerätetasten
32	Setup geändert über Kommunikation
3359	Reserviert
60	Setpoint aktiv: Überschreitung Strangspannung
61	Setpoint aktiv: Überschreitung Außenleiterspannung
62	Setpoint aktiv: Überschreitung /
63	Setpoint aktiv: Überschreitung P _{ges}
64	Setpoint aktiv: Überschreitung Q_{ges}
65	Setpoint aktiv: Unterschreitung Strangspannung

Ereignis- Klassifizierung	Bedeutung
66	Setpoint aktiv: Unterschreitung Außenleiterspannung
67	Setpoint aktiv: Unterschreitung Leistungsfaktor
68	Setpoint inaktiv: Überschreitung Strangspannung
69	Setpoint inaktiv: Überschreitung Außenleiterspannung
70	Setpoint inaktiv: Überschreitung /
71	Setpoint inaktiv: Überschreitung $P_{\rm ges}$
72	Setpoint inaktiv: Überschreitung $Q_{\rm ges}$
73	Setpoint inaktiv: Unterschreitung Strangspannung
74	Setpoint inaktiv: Unterschreitung Außenleiterspannung
75	Setpoint inaktiv: Unterschreitung Leistungsfaktor

Tab. 8.13: Ereignis-Klassifizierung (2. Register des Ereignisspeichers)

8.9 Speicher Maximal-/Minimalwerte (Max-/Min-Speicher)

8.9.1 Speicher Maximalwerte

Register	Eigen- schaft	Beschreibung	Format	Einheit
43000	RO	U _{L1 max} 1)		x100 V ²⁾
43004	RO	U _{L2 max} 1)		x100 V
43408	RO	U _{L3 max} 1)		x100 V
43012	RO	Ø U _{LN max}		x100 V
43016	RO	U _{L1L2 max}		x100 V
43020	RO	U _{L2L3 max}		x100 V
43024	RO	U _{L3L1 max}	siehe Tabelle 8.16	x100 V
43028	RO	Ø U _{LL max}		x100 V
43032	RO	I _{1 max}		x1000 A
43036	RO	I _{2 max}		x1000 A
43040	RO	I _{3 max}		x1000 A
43044	RO	ØI _{max}		x1000 A
43048	RO	P _{L1 max} 1)		x1000 kW

Register	Eigen- schaft	Beschreibung	Format	Einheit
43052	RO	P _{L2 max} 1)		x1000 kW
43056	RO	P _{L3 max} 1)		x1000 kW
43060	RO	P _{ges max}		x1000 kW
43064	RO	Q _{L1 max} 1)		x1000 kvar
43068	RO	Q _{L2 max} 1)		x1000 kvar
43072	RO	Q _{L3 max} 1)		x1000 kvar
43076	RO	Q _{ges max}		x1000 kvar
43080	RO	S _{L1 max} 1)	siehe Tabelle 8.16	x1000 kVA
43084	RO	S _{L2 max} 1)		x1000 kVA
43088	RO	S _{L3 max} 1)		x1000 kVA
43092	RO	S _{ges max}		x1000 kVA
43096	RO	$\lambda_{L1 \text{ max}}^{1)}$		x1000
43100	RO	$\lambda_{L2 \text{ max}}^{1)}$		x1000
43104	RO	$\lambda_{L3max}^{1)}$		x1000
43108	RO	λ_{gesmax}		x1000

Register	Eigen- schaft	Beschreibung	Format	Einheit
43112	RO	f _{max}		x100 Hz
43116	RO	max. Spannungsun- symmetrie	- siehe Tabelle 8.16	x1000
43120	RO	max. Strom- unsymmetrie		x1000
43124	RO	THD _{UL1 max}		x10.000
43128	RO	THD _{UL2 max}		x10.000
43132	RO	THD _{UL3 max}		x10.000
43136	RO	THD _{I1 max}		x10.000
43140	RO	THD _{I2 max}		x10.000
43144	RO	THD _{I3 max}		x10.000

Tab. 8.14: Speicher Maximalwerte

- 1) Nur bei Verwendung einer Sternschaltung (WYE).
- 2) "x100 V" bedeutet, dass der gelieferte Spannungswert des Registers 100 mal größer ist als der Messwert (der Wert des Registers muss also durch 100 geteilt werden, um den Messwert zu erhalten).

8.9.2 Speicher Minimalwerte

Register	Eigen- schaft	Beschreibung	Format	Einheit
43200	RO	U _{L1 min} 1)		x100 V ²⁾
43204	RO	U _{L2 min} 1)		x100 V
43208	RO	U _{L3 min} 1)		x100 V
43212	RO	Ø U _{LN min}		x100 V
43216	RO	U _{L1L2 min}		x100 V
43220	RO	U _{L2L3 min}		x100 V
43224	RO	U _{L3L1 min}	siehe Tabelle 8.16	x100 V
43228	RO	Ø U _{LL min}	Sierie rabelle orro	x100 V
43232	RO	I _{1 min}		x1000 A
43236	RO	I _{2 min}		x1000 A
43240	RO	I _{3 min}		x1000 A
43244	RO	Ø I _{min}		x1000 A
43248	RO	P _{L1 min} 1)		×1000 kW
43252	RO	P _{L2 min} 1)		x1000 kW

Register	Eigen- schaft	Beschreibung	Format	Einheit
43256	RO	P _{L3 min} ¹⁾		x1000 kW
43260	RO	P _{ges min}		x1000 kW
43264	RO	Q _{L1 min} 1)		x1000 kvar
43268	RO	Q _{L2 min} 1)		x1000 kvar
43272	RO	Q _{L3 min} 1)	siehe Tabelle 8.16	x1000 kvar
43276	RO	Q _{ges min}		x1000 kvar
43280	RO	S _{L1 min} 1)		x1000 kVA
43284	RO	S _{L2 min} 1)		x1000 kVA
43288	RO	S _{L3 min} 1)		x1000 kVA
43292	RO	S _{ges min}		x1000 kVA
43296	RO	$\lambda_{L1 \text{ min}}^{1)}$		x1000
43300	RO	$\lambda_{L2min}^{1)}$		x1000
43304	RO	$\lambda_{L3 min}^{1)}$		x1000

Register	Eigen- schaft	Beschreibung	Format	Einheit
43308	RO	λ_{gesmin}		x1000
43312	RO	f _{min}		x100 Hz
43316	RO	min. Spannungs- unsymmetrie		x1000
43320	RO	min. Strom- unsymmetrie		x1000
43324	RO	THD _{UL1 min}	siehe Tabelle 8.16	x10.000
43328	RO	THD _{UL2 min}		x10.000
43332	RO	THD _{UL3 min}		x10.000
43336	RO	THD _{I1 min}		x10.000
43340	RO	THD _{I2 min}		x10.000
43344	RO	THD _{I3 min}		x10.000

Tab. 8.15: Speicher Minimalwerte

- 1) Nur bei Verwendung einer Sternschaltung (WYE).
- 2) "x100 V" bedeutet, dass der gelieferte Spannungswert des Registers 100 mal größer ist als der Messwert (der Wert des Registers muss also durch 100 geteilt werden, um den Messwert zu erhalten).

8.9.3 Datenstruktur Max-/Min-Speicher

Offset	Eigenschaft	Beschreibung	Format
+0	RO	HiWord: Max- bzw. Min-Wert	UINT16
+1	RO	LoWord: Max- bzw. Min-Wert	UINT16
+2	RO	HiWord: UNIX-Zeit	UINT16
+3	RO	LoWord: UNIX-Zeit	UINT16

Tab. 8.16: Datenstruktur Max-/Min-Speicher

8.10 Zeiteinstellung

Das PEM333... bietet zwei Formate der Zeitdarstellung:

1. Jahr/Monat/Tag/Stunde/Minute/Sekunde Register 60000...60002

2. UNIX-Zeit Register 60004...60005

Beim Setzen der Zeit über Modbus muss darauf geachtet werden, dass lediglich ein Format der Zeitdarstellung verwendet wird. Die zusammengehörenden Register müssen gleichzeitig gesetzt werden.

Wenn sämtliche Register **60000...60005** gesetzt worden sind, so zeigen beide Zeitstempel-Register die Zeit als UNIX-Zeit an. Eventuell vorgenommene Einstellungen in der ersten Darstellungsweise werden ignoriert.

Das Register **60003** zeigt optional Millisekunden an. Für die Zeitstempel-Übertragung muss der Funktioncode auf 0x10 (Preset Multiple Register) gesetzt werden. Ungültige Datums-oder Zeiteinträge weist das Universalmessgerät zurück.

Register	Eigen- schaft	Beschreibung	Format	Hinweis
60000	RW	Jahr und Monat	UINT16	HiWord: Jahr 2000 + (169) LoWord: Monat (112)
60001	RW	Tag und Stunde	UINT16	HiWord: Tag (128/29/30/31) LoWord: Stunde (023)
60002	RW	Minute und Sekunde	UINT16	HiWord: Minute (059) LoWord: Sekunde (059)
60003	RW	Millisekunde	UINT16	0999
60004 60005	RW	UNIX Time	UINT32	Zeit in Sekunden, die seit dem 01.Januar 1970 (00:00:00 h) vergangen sind (03155759999)

Tab. 8.17: Zeitstempel-Register

8.11 Steuerung der Ausgänge DOx

Die Steuerregister der beiden digitalen Ausgänge sind Nur-Schreibe-Register (WO) und werden mit dem Funktionscode 0x05 gesetzt. Um den aktuellen Status der Ausgänge abzufragen, muss das Register **40066** ausgelesen werden.

PEM unterstützt das zweistufige Ausführen von Befehlen an die Ausgänge (ARM before EXECUTING): Ehe ein Öffnen- bzw. Schließen-Befehl an einen der Ausgänge gesendet wird, muss dieser erst aktiviert werden. Dies geschieht über den Eintrag 0xFF00 in das jeweilige DO-Register. Wenn der aktivierte Ausgang nicht innerhalb von 15 Sekunden einen auszuführenden Befehl erhält, so wird dieser Ausgang wieder deaktiviert.

Jeder auszuführende Befehl, der an an einen nicht zuvor aktivierten Ausgang geschickt wird, wird vom PEM333... ignoriert und statt dessen als Ausnahmecode 0x04 zurückgegeben.

Die "ARM before EXECUTING"-Funktion wird im Register 41007 ein- bzw. ausgeschaltet.

Register	Eigen- schaft	Format	Beschreibung
60064	WO	UINT16	Schließen DO1 aktivieren
60065	WO	UINT16	Schließen DO1 ausführen
60066	WO	UINT16	Öffnen DO1 aktivieren
60067	WO	UINT16	Öffnen DO1 ausführen
60068	WO	UINT16	Schließen DO2 aktivieren
60069	WO	UINT16	Schließen DO2 ausführen
60070	WO	UINT16	Öffnen DO2 aktivieren
60071	WO	UINT16	Öffnen DO2 ausführen
6007260127		Reserviert	

Register	Eigen- schaft	Format	Beschreibung
60128	WO	UINT16	Reset Alarm-LED u. Summer aktivieren
60129	WO	UINT16	Reset Alarm-LED u. Summer ausführen

Tab. 8.18: Steuerregister digitale Ausgänge

8.12 Information Universalmessgerät

Register	Eigen- schaft	Beschreibung	Format	Hinweis	
60200 60219	RO	Modell [*]	UINT16	Siehe Tabelle 8.20 auf Seite 98	
60220	RO	Software Version	UINT16	Bsp.: 10000 = V1.00.00	
60221	RO	Protokoll Version	UINT16	Bsp.: 40 = V4.0	
60222	RO	Software Update Datum (Jahr + 2000)	UINT16	Bsp.: 080709 = 09.Juli 2008	
60223	RO	Software Update Datum: Monat	UINT16		
60224	RO	Software Update Datum: Tag	UINT16		
60225	RO	Seriennummer	UINT32		
6022760229		Reserviert			
60230	RO	Eingangsmessstrom	UINT16	1 / 5 (A)	
60231	RO	U _S	UINT16	100 / 400 (V)	

Tab. 8.19: Informationen Universalmessgerät

^{*} Das Modell des Universalmessgeräts ist in den Registern 60200...60219 enthalten.

Die folgende Tabelle zeigt die Kodierung am Beispiel "PEM333".

Register	Wert (Hex)	ASCII
60200	0x50	Р
60201	0x45	Е
60202	0x4D	М
60203	0x33	3
60204	0x33	3
60205	0x33	3
6020660219	0x20	Null

Tab. 8.20: ASCII-Kodierung "PEM333"

9. Technische Daten

Isolationskoordination

Überspannungskategorie	300 V
Überspannungskategorie	300 V II 2
Frequenzbereich von U_{S}	95250 V
Messkreis	
U _{L112,L213,I3L1}	230 V 400 V 10120 % <i>U</i> ₀ >500 kΩ
Bürde	sollten mindestens der Genauigkeitsklasse 0,5 S entsprechen
	1A
Messstromwandler-Übersetzungsver	hältnis 130.000

Genauigkeiten (v. M. vom Messwert/v. S.	vom Skal	enendwei	rt)	
Strangspannung U _{L1-N} , U _{L2-N} , U _{L3-N}			±	0,2 % v. M.
Strom		± 0,2 9	6 v. M. +	0,05 % v.S .
Neutralleiterstrom / ₄				1 % v. S.
Frequenz				± 0,02 Hz
Phasenlage				±1°
Messung der Wirkenergie 0,5 S	nach DI	N EN 62053-22	(VDE 041	8 Teil 3-22)
Messung der Effektivwerte der Spannung	nach DIN EN	61557-12 (VDE	0413-12), Kap. 4.7.6
Messung der Effektivwerte des Phasenstroms	nach DIN EN	61557-12 (VDE	0413-12), Kap. 4.7.5
Messung der Frequenz	nach DIN EN	61557-12 (VDE	0413-12), Kap. 4.7.4
Schnittstelle PEM333				
Schnittstelle/Protokoll			RS-485/N	Andhus RTII
Baudrate				
Leitungslänge			,	,
Leitung geschirmt (Schirm einseitig an Klemme SH am Gerät)				
			, - (, -	
Schaltglieder PEM333				C . l. l O
AusgängeArbeitsweise				
		DC 24 V AC		
Bemessungsbetriebsspannung		DC 24 V AC 5 A		
Bemessungsbetriebsstrom				
Minimale Kontaktbelastbarkeit				
Eingänge				
/ _{min}				
Ďi				DC 24 V
Schaltglieder PEM333P				
Ausgänge				
max. zulässige Fremdspannung				
max. Schaltstrom				
Eingänge				
/ _{min}				
<i>U</i> _{DI}				DC 24 V
Umwelt/EMV				
EMV			DIN	EN 61326-1

Arbeitstemperatur	-25+55°C
Ortsfester Einsatz	3K5
Mechanische Beanspruchung nach DIN EN 60721	
Ortsfester Einsatz	3M4
Anschluss	
Anschlussart	Schraubklemmen
Sonstiges	
Schutzart Einbau	IP20
Schutzart Front	IP52
Entflammbarkeitsklasse	UL94V-0
Gewicht	≤ 550 g
Abtastrate	1,6 kHz
Gesamt-Oberschwingungsverzerrung THD	bis zur 15. harmonischen Oberschwingung
Luftfeuchtigkeit	5
Luftdruck	70 kPa 106 kPa
Montageausschnitt	92 x 92 mm (3,62" x 3,62")
Abmessungen	96 x 96 x 75 mm (3,8" x 3,8" x 3,0")

nur PEM333-...P:

PEM333-...P ist eine Einrichtung der Klasse A. Die Einrichtung kann im Wohnbereich **Funkstörungen** verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen.

9.1 Normen und Zulassungen

PEM330/PEM333... wurde unter Beachtung folgender Normen entwickelt:

DIN EN 62053-22 (VDE 0418 Teil 3-22)

Wechselstrom-Elektrizitätszähler - Besondere Anforderungen - Teil 22: Elektronische Wirkverbrauchszähler der Genauigkeitsklassen 0,2 S und 0,5 S (IEC 62053);

DIN EN 61557-12 (VDE 0413-12)

Elektrische Sicherheit in Niederspannungsnetzen bis AC 1 000 V und DC 1500V – Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen – Teil 12: Kombinierte Geräte zur Messung und Überwachung des Betriebsverhaltens

9.2 Bestellangaben

Тур	Stromeingang	Art. Nr.		
PEM330				
PEM330	5 A	B 9310 0330		
PEM330-251	1 A	B 9310 0331		
PEM333, 2 DI, 2 DO, RS-485-Schnittstelle				
PEM333	5 A	B 9310 0333		
PEM333-251	1 A	B 9310 0334		
PEM333P, 2 DI, 2 Pulsausgänge, RS-485-Schnittstelle				
PEM333-255P	5 A	B 9310 0335		
PEM333-251P	1 A	B 9310 0336		

INDEX

1	Λ	
,	٦	

Anschluss über Spannungswandler 35 Anschlussschaltbild 24

Anschlussschema

- Dreiphasen-3-Leitersysteme 33

- Dreiphasen-4-Leitersysteme 30

- Einphasen-2-Leitersystem 32

- Einphasen-3-Leitersystem 32

- Spannungswandler 33

Anwendungsbeispiel 18

Anzeigemodus

- Datenanzeige 44

- Standardanzeige 43

Arbeiten an elektrischen Anlagen 13 Ausgang, digitaler 35

В

Bedarf 63
Bedarf, Länge Messzeitraum 63
Bedienelemente 37
Benutzungshinweise 9
Bestimmungsgemäße Verwendung 13

D

Demand Display 42 Diagnosebit 78 Digitale Ausgänge 27
Digitale Eingänge 27, 29, 35
Digitaler Ausgang 35
- Steuerung Modbus 96

E

Eingänge, digitale 35 Einsatzbereich 15

Energy Pulsing

- aktivieren/deaktivieren 55

- LED-Anzeige 43

Energy pulsing

- Anzeige 61

Ereignis

- Klassifizierung 85

Ereignisspeicher 65

- Modbus 84

Erkennung Anschlussfehler 78

F

Frontansicht 20 Fronttafeleinbau 23 Funktionsbeschreibung 19

G

Gerätemerkmale 15 Gesamt-Oberschwingungsverhältnis 41, 46, 49

- Spannung 62 - Strom 62 Inbetriebnahme 35 Power Factor Regeln 58 K Power Quality 65 k-Faktor 46, 50, 65, 77 Praxisseminare 11 Pulsausgänge 29, 62 L S LC-Display - Leistungs- und Strombedarfe 42 Scheinleistung, Berechnung 57 - Standarddisplayanzeigen 39-41 Schulungen 11 - Test 38 Service 10 LED-Anzeige 43 Setpoint - Datenstruktur 83 М Setpoint, digitale Ein-u. Ausgänge 65 Maßbild 22 Setup 52 Messstromwandler 24 - Bedeutung der Taster 51 Messzeitraum Bedarf, Länge einstellen 63 - Einstellmöglichkeiten 53-57 Modbus - Modus starten 51 Basismesswerte 68 - Übersichtsdiagramm Menü 52 - Energiemessung 73 Sicherheitshinweise 14, 21 - Ereignisspeicher 84 SOE-Log - Gesamt-Oberschwingungsverhält-- Modbus 84 nis 77 Speicher Maximal-/Minimalwerte 88 - Informationen Messgerät 97 Steuerung - K-Faktor 77 - Digitale Ausgänge 96 - Registerübersicht 67 Support 10 - Setup-Parameter 80 - SOE-Log 84 Т - Spitzenbedarf 76 Taster Montage 21 - Energy 47, 50 - Phase 45, 49 - System 44, 47 Phasenwinkel Technische Daten 99

THD 41, 46, 49, 77

U

Unsymmetrie 66

٧

Versionen 17 Verwendung, bestimmungsgemäße 13 Vorsicherungen 24

Bender GmbH & Co. KG

Londorfer Str. 65 • 35305 Grünberg • Germany Postfach 1161 • 35301 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de

www.bender.de

Fotos: Bender Archiv